LTL Model Checking with use of Generalised
Stuttering and Characteristic Patterns

Abdallah Saffidine
September 1, 2009

Abstract

Linear Temporal Logic (LTL) Model Checking can be used to check
whether a concurrent system satisfies constraints such as fairness or
liveliness among others. The main bottleneck is the space taken by
the structure used to represent the system. When the LTL formula
does not contain the ‘next’ operator, partial order reduction can be
used to reduce the space requirement. We tried in this internship to
use LTL fragments to be able to reduce the space requirement when
the formula does contain ‘next’, or to reduce even more the space
requirement when the formula does not contain ‘next’ and contains a
bounded number of ‘until’.

First of all, I would like to thank warmly my internship mentor Stefan
Schwoon for being always full of advice and ideas. Many thanks to Jan
Strejéek for sharing his intuition and expertise on the topic. Thanks to
Andreas Gaiser, without him the internship would have been much less en-
joyable. Finally a warm thanks goes to the whole chair for Foundations
of Software Reliability and Theoretical Computer Science, where everybody
has been very welcoming.

Foreword

This document is the report of an internship I did in the Chair for Founda-
tions of Software Reliability and Theoretical Computer Science of the Techni-
cal University of Munich under Stefan Schwoon’s supervision, from February,
23. 2009 to April, 17. 2009. This internship was part of my first year of
master studies.

1 Introduction

Model Checking is a fascinating computer science topic at the crossroads
of theoretical computer science and hardware or software design. The im-
portance of the subject has been recognised as shown by the 2007 Turing
award being received by the inventors of Model Checking. Model Checking,
as many verification problems, suffers from the state explosion problem. In
Linear Temporal Logic (LTL) Model Checking, the state explosion problem
can be partly reduced by using partial order reduction methods. In those
methods one tries not to verify every single possible execution of the system
but groups of similar executions all at once. This work was an introduction
to Model Checking and an attempt to understand partial order reduction in
LTL Model Checking. Partial order reduction uses the stutter equivalence
relation. The aim of the internship was to try to use the generalised stut-
tering principle defined in [4] in order to design a generalised partial order
reduction method for LTL Model Checking. Although this ambitious goal
has not been fully reached, many significant and interesting insights in par-
tial order reduction, generalised stuttering and characteristic patterns were
gained.

The report is organised as follows. Section 2 recalls the syntax and se-
mantics of LTL, as well as the definition of the stuttering principle and its
use in partial order reduction. Then, in section 3 a first idea to generalise
the partial order reduction method is presented with use of generalised stut-
tering. Finally, in section 4, we define characteristic patterns which can also
possibly be used to reduce the space requirement of LTL Model Checking.

2 LTL Model Checking and Partial Order Reduc-
tion

LTL Model Checking is a tool to check whether a program, abstracted as
a Kripke structure, satisfies properties expressed in a temporal logic called
Linear Temporal Logic (LTL). The program satisfies the specification when
every possible run of the Kripke structure satisfies the formula.

2.1 Linear Temporal Logic

LTL is a modal logic to specify the evolution of a system with respect to time.
While a propositional logic formula can be evaluated over sets of variables, an
LTL formula is evaluated over sequences of sets of variables. An LTL formula
is made of atomic propositions, propositional logic operators (=, A,V) and
temporal operators (X next, U until, G globally).

Let o be a sequence. We define o(n) for n € N as the n + 1** element of
o. Therefore 0 = 0(0)o(1)a(2)...0(n).... We also define o, to be the n*
suffix of o. The following quality holds: o, = o(n)o(n+1)...

Let At be a set of atomic proposition. The LTL formulae on At are
defined by induction as T, p, ¢, ¢ A Y, X ¢, pUtp with p € At and ¢, two
LTL formulae. The semantics of a formula is the set sequences satisfying the
formula. For o a sequence of elements of 24, we compute by induction the
formula satisfied by o as follows.

e o satisfies T' (true): o =1T.

e If p is an atomic proposition, then o satisfies the LTL formula p if p is
set on the first state of o: Vp € At,0 =p < p € o(0).

o If ¢ and 1 are two LTL formulae, then o satisfies ¢ A 1) if o satisfies ¢
and o satisfies : o E o ANY <= o= dNo E .

o If ¢ is an LTL formula, then o satisfies —¢ if ¢ does not satisfy ¢:
oE ¢ <= oo

e If ¢ is an LTL formula, then o satisfies X¢ (next ¢) if the sequence
starting at the second state of o satisfies ¢: 0 = X¢ <= o1 F ¢

e If ¢ and) are two LTL formulae, then o satisfies pU1) (¢ until 1) if
each suffix of o satisfies ¢ until one satisfies ©: o = pUtyp <= Tk €
NVi<koEo¢ANor EY

Given a set of LTL formulae A over At, we say that two sequences o and
p of 24t can be distinguished in A if there exists a formula satisfied by o but
not satisfied by p or if there exists a formula satisfied by p but not satisfied
by o.

We defined the basic syntax and semantics of LTL formulae. In practise
other operators are useful too. They are defined as abbreviation for the
corresponding basic operators combination: ¢ V 1 abbreviates =(—¢ A =),
F¢ reads finally ¢ and abbreviates TU ¢, G¢ reads globally ¢ and abbreviates
—F—¢.

The nested depth of X (resp. U) in a formula ¢ and noted X (¢) (resp.
U(¢)) is defined by induction as follows:

e X(T)=0 o U(T) =

o X(=¢) = X(9) e U(=¢) =U(9)

o X(¢AY) = max(X(¢), X(¢)) o U(¢ Ny) = max(U(¢),U())

o X(X¢)=1+X(¢) o U(Xe)=U(9)

o X(¢Ut) = max(X(¢), X (1)) o U(@Uy) = 1+ max(U(¢), U(¢))

We call LTL(U™, X™) the set of the formulae ¢ such that the nested
depth of X (resp. U) in ¢ is less than or equal to n (resp. m). We call
LTL(U, X™) (resp. LTL(U™,X"™)) the set of the formulae ¢ with nested
depth of X (resp. U) less than or equal to n (resp. m) and any nested depth
of U (resp. X).

o LTL(U™, X") = {¢ € LTL ,U(¢) < m A X(¢) < n}
o LTL(U,X") = {¢ € LTL , X(¢) <n}
o LTL(U™, X) = {¢ € LTL ,U(¢) < m}

2.2 LTL Model Checking

The purpose of Model Checking is to check that a given system behaves
accordingly to a specification. The system is represented as a Kripke struc-
ture K = (S,s;,T,L). S is the finite set of states. s; € S is the ini-
tial state. T is the set of transition relations: V¢t € T,t C S x S. We
assume that for each state there is a transition possible from that state:
Vs € S,3s' € S;t € T,(s,s') € t (we write t(s) = s/) L : S — 24 is
the labelling function. A path starting at sg is a succession of states in S
808182 ... Sp ... respecting the transition relation: Vi, (s;, s;+1) € T. We are
only considering infinite paths.

The labels of the state represent properties about the system. It can be
an excerpt from the memory of the system, and it would thus describe the
values of the variables. Otherwise it can be of a higher level nature and reflect
easy properties of the system. For instance an atomic proposition could be
set when x > y and unset when x < y. From a given state there may be
several transitions enabled because the original system can offer concurrency.

cobegin procedure A () procedure B()

A; B; begin begin
coend for i=1 to 5 do z = 2;
begin x =x + 7;
X =x+ 1; z =2 * z;
X =x - 1; z =z — 1;
end end
end
x =x + 1; ;t z = 23
x =x — 1; 1/\\(] Xx =x + 7;
x =x+ 1; 0/\1/\7 z =2 % z;
x =x - 1; :/\[J/\\s/ T:.=2:l,
e a 1 o NN
e 1 AN
s NN
T UIANANS NN
x = x + 1; (:/ \1/ \7/\51/\?/
TN NS NN
NSNS NS
NN NN
NSNS NS
NN
N
£\

Figure 1: A concurrent program with two threads and the corresponding
Kripke structure. We are interested in the value of x at each state of the
Kripke structure. Example taken from [4].

For instance fig. 2.2 shows a programme with two parallel threads and the
Kripke structure corresponding to the possible evolution from the initial
state. Let’s have G(x < 8) as specification formula. It involves = only so we
keep information about x in each state of the Kripke structure.

Every path sgs1...5s, ... in K gives rise to a sequence of elements of
L(so)L(s1)...L(sp).... We say that a LTL formula ¢ is valid for a state s
in the Kripke structure K if for every path in K starting at the state s, the
labelled sequence corresponding to the path satisfies ¢.

Initially the system is described implicitly; the verifying system is not
provided with the whole Kripke structure but with the starting node corre-
sponding to the initial state of the system and a transition function. The
transition function accepts a node as argument and returns the followers

2At

of the node. This procedure allows to verifies the system on-the-fly; it is
possible to find a counter-example to the specification without unfolding the
whole structure.

2.3 Partial Order Reduction

Partial order reduction is a method (or a class of methods) that can be
used to decrease the complexity of checking if a system satisfies an LTL
formula. Sometimes two sequences are distinct but cannot be distinguished
by an LTL formula. Therefore, given a set of formula, equivalence classes
for sequences can be drawn. Two sequences are equivalent if they satisfies
the same formulae of the set. Partial order reduction is based on this very
principle. If two runs of the systems give rises to two equivalent sequences,
only one of the two runs needs to be simulated /unfolded.

We are considering the LTL(U, X°) fragment, that is the ‘next’-free for-
mulae. Practical specifications often consist of ‘next’-free formulae, mainly
due to the fact that the single time step concept is hard to define; it could
be a processor step, a step in the algorithm etc.

We start by recalling the stuttering principle which gives us an equiva-
lence relation for sequences such that if two sequences are equivalent then
they cannot be distinguished by any LTL(U, X°) formula.

To define formally the stuttering equivalence we first identify redundant
letters. Let o be a sequence. A letter of o, o(i) is called redundant if
o(i) = o(i + 1) and there exists j > i such that o(i) # o(j). The canonical
form of o is the infinite word extracted from o by removing all redundant
words. Two sequences are stutter equivalent if they have the same canonical
form.

We have the following theorem [4], originally proved by Lamport in 1983.

Theorem 1 If 0 and p are stutter-equivalent then they cannot be distin-
guished in LTL(U, XY).

Given a state (or node) in the Kripke structure s, we call enabled(s) the
transitions enabled in s. As stated in 2.2, we do not want to unfold the whole
Kripke structure. When several runs are equivalent, it is sufficient to check
only if one of them satisfies the specification formula. We are going to define
ample(s) C enabled(s), so that for every run using a transition of enabled(s)
there is an equivalent run using a transition of ample(s). Therefore if we
prove that all the runs through ample(s) satisfy the specification formula, we
will prove that all the runs through enabled(s) satisfy the specification and
therefore every run through s satisfies the specification. We define ample(s)
conservatively. Of course ample(s) = enabled(s) is possible, but the smaller
the ample set, the smaller the explored structure.

We do not give rules to construct explicitly the ample sets, but rather
sufficient conditions that the ample sets must fulfil in order to enable all

equivalent classes for the runs. Some heuristic can then suggest sets that are
matched against the conditions and taken as the ample set if they follow the
conditions.

In the following we assume that we have a Kripke structure K = (S, s;,T, L),
and a specification formula ¢ € LTL(U, X°). We assume our labelling func-
tion L labels each states only with atomic propositions occurring in ¢. We
want to solve the model checking problem for K and ¢, that is find a run
in K which does not satisfy ¢ or prove that every run in K satisfies ¢. To
be able to compute the ample sets, we use the concepts of invisibility and
of independence. A transition ¢ € T is said to be invisible if it does not
change the validity of the atomic proposition: V(s,s’) € t,L(s) = L(s').
In the example presented fig. 2.2, z = z % 2 is an invisible transition as it
does not change the value of x. The two transition relations t,t' are inde-
pendent if for every state s in which both are enabled the following holds:
t € enabled(t'(s)),t" € enabled(t(s)) and t(t'(s)) = ¢/(¢(s)). In our example
the transitions occurring in one thread for procedure A are independent from
the transitions occurring in the other for procedure B.

There are four conditions for the ample sets to fulfil [1].

1. ample(s) = 0 if and only if enabled(s) = ()

2. Along every path in the original structure starting at s it holds that a
transition dependent on a transition in ample(s) cannot be executed
without a transition in ample(s) occurring first.

3. If ample(s) # enabled(s) then every t € ample(s) is invisible.

4. A cycle is not allowed if it contains a state in which some transition
t is enabled, but is never included in ample(s) for any state s on the
cycle.

To see if a candidate set fulfils the first condition and the third condition
is easy. Invisible transition are stated as such before the algorithm starts,
they can be detected by program analysis. When in doubt, it is secure to
consider a transition to be always visible. The Kripke structure is explored
in a depth-first search manner. This can be used to efficiently match the
candidate set against condition four: if the current node is s and one of
the transition ¢ would complete a cycle then the node ¢(s) has already been
explored and is still on the stack. We have access to all the nodes of the
potential cycle by looking in the stack between ¢(s) and s, so condition four
can be checked. Condition two is actually the hardest to check. In practise
we use program/system dependent heuristics to test it.

The partial order reduction has been applied to fig. 2.2 and the result is
presented on fig. 2.3. The transitions that did not belong to the ample sets
and that were not used to explore the system are drawn with dotted lines.

‘k/'“

S

S
//i. o
A
'<.\“'VV

\"}"’

//
/./

o
\
Z/i/‘\
<<

X

N

Figure 2: The reduced Kripke structure obtained after using partial order
reduction on the example presented in [4] and in fig. 2.2. Dotted lines were
not explored. Half of the transitions were not explored and several nodes
could be avoided too.

3 Generalised Stuttering

We have seen that when a formula ¢ belongs to LTL(U, X°), partial order
reduction methods through use of the ample sets concept allowed not to
unfold the structure of the whole system. The algorithm uses the fact that
when two sequences are stutter-equivalent, they cannot be distinguished by
¢.

Generalised Stuttering was defined in [3] and tries to find better suited
equivalence relations when the nested depth of U is small or for formulae
that do not belong to LTL(U, X?).

We call the stuttering equivalence relation previously defined standard
stuttering in the rest of the report.

3.1 Letter and Subword Stuttering

Standard stuttering states that two sequences are equivalent when they can
be reduced to the same sequence of letter by removing consecutive repeated
letters. That is, the sequences are equivalent when we do not count the
number of adjacent copies for each letter.

Informally n-letter stuttering is a generalisation of standard stuttering

Ness discriminating, with fewer equivalent classes

that is able to “count” the number of consecutive occurrences for each letter
up to n + 1 but no further. We write o ~1, p when o is n-letter stutter
equivalent to p. The Standard Stuttering is the O-letter stuttering.

For instance let o9 = aaabbccccaabea”, o1 = aaabbbcccabea®”, o9 =
aaabbcccaabea”. We have og ~ 01 ~ 09 ~ abcabca®, but og ~1,1 02 %11 01,
and o)y} ﬁl’g g9.

To define formally the n-letter stuttering, we extend concepts of the
standard stuttering. For a given sequence o, a letter o(7) is n-redundant if it
occurs at least n 4 1 times consecutively o(i) = o(i+1)=...=c(i+n+1)
and but no infinitely many times consecutively 35 > i,0(i) # o(j). The
n-canonical form of o is extracted from o by removing every n-redundant
letter. Two sequences are n-letter stutter equivalent if they have the same
n-canonical form.

Remark that if o ~1, p then VO < ¢ < n,0 ~;; p. The n + 1-letter
stuttering equivalence is refining the n-letter stuttering. Strejéek proved
that LTL(U, X™) formulae could not distinguish between n-letter stutter
equivalent sequences [3|, generalising theorem 1.

The m-subword stuttering is another generalisation of the standard stut-
tering. Here we do not only delete consecutively repeated letters to obtain
a canonical form but also whole words. For instance ogp = abababc® and
o1 = ababc® are 0- and 1l-subword stutter equivalent but not 2-subword
stutter equivalent. The repeated subword is ab.

Strejéek proved in [3] that LTL(U™, X) formulae could not distinguish
between m-subword stutter equivalent sequences. A formal definition of the
m-subword stuttering, as well as a broader generalisation of the stuttering
principle are presented in [3].

3.2 Generalised Partial Order Reduction

Fig. 3.2 shows a hand-written partial order reduction for the example pre-
sented in fig. 2.2. No algorithm is known yet to obtain such a result auto-
matically.

We present an argument (but no formal proof) to show that partial order
reduction based on generalised stuttering can be computationally expensive.
We develop an example based on the 1-letter stuttering but it is easy to
extend to n-letter stuttering and m-subword stuttering. This extension is
straightforward because of the counting aspect that n-letter stuttering and
m~subword stuttering share and which does not occur in the standard stut-
tering.

The examples provided in fig. 3.2 and 3.2 show two Kripke structure
and a minimal partial order reduced structure for 1-letter stuttering. Let
call a the label with horizontal strips, b the label with black filling, and ¢
the label with vertical strips. In fig. 3.2 the possible sequences of labels
are baaabbbbbbba, baaaabbbbbba, ... and baaaaaaabbba. They all have the

/'(;

X

Y,

Ve

Figure 3: Running example (fig. 2.2, 2.3) reduced with use of the general
stuttering principle. The reduction is done by hand.

same l-canonical form baabba. Therefore only one run is needed to check
whether a LTL(U, X!) formula is satisfied. In the reduced structure, one
run is possible and it has baabba as 1-canonical form so both structure are
equivalent with respect to LTL(U, X') formulae satisfaction. In the system
presented in fig. 3.2 however, there are several possible canonical sequences:
baabbcca, baabbca, and baabca. The reduced structure allows runs for every
canonical sequence. The problem is that it is impossible to know locally
if a transition should be omitted or not. In our example, one has to look
ahead to enable a transition to the right soon enough so that the canonical
sequence baabbcca remains reachable. The look-ahead distance is linear in n
in case of n-letter stuttering and in m X p in case of m-subword stuttering
with a word of size u being repeated. The main bottleneck is that the look-
ahead distance is also linear in the number of transitions independent from
the invisible one. Here we have two transitions going to the left and we are
dealing with 1-letter stuttering so the look-ahead distance is about 2 x 1.

The second example 3.2 show that it is possible to construct structure
that need to look ahead arbitrarily far ahead. There are also structures that
need to be able to look far backward among the predecessors of the node, not
only on the stack while searching but among all predecessors within a given
arbitrarily profound depth. Those backward structures were not introduce
for the sake of brevity.

10

4 Characteristic Patterns

We have seen that the generalised stuttering equivalence relation was con-
nected to the LTL hierarchies in the following way. If o and p are m, n-stutter
equivalent, then they cannot be distinguished by any LTL(U™, X"™) formula.
However for all m,n there exist sequence o and p that are not m, n-stutter
equivalent but cannot be distinguished by any LTL(U™, X"™) formula [4].
It means that in general the best reduction achievable through generalised
stuttering is not as good as the optimal reduction.

The characteristic patterns were defined to match the LTL hierarchy
better. For all m,n a set of characteristic (m,n)-patterns is defined. Each
sequence is represented by exactly one pattern. Two sequences are repre-
sented by the same characteristic (m,n)-pattern if and only if they cannot
be distinguished by any LTL(U™, X™) formula.

For the sake of brevity and simplicity, we will not present here the general
(m,n)-patterns but only (m,0)-patterns. For a more complete and formal
introduction to characteristic patterns, the seminal paper by Strejcek [2] is
advised.

4.1 Intuitive Definition

To get an idea of how characteristic patterns are constructed, let’s consider
the following construction of the (2,0)-pattern of a given word. We write
(1,0)-patterns made out of an alphabet ¥ with a succession of letters of ¥
in parenthesis. Let’s have ¥ = {a,b,c} as an alphabet. Let oo = aabaca® €
¥“ be a w-word over the alphabet ¥. The (1,0)-pattern of «, denoted
pat(1,0,«) is the finite word obtained from « by deletion of all repeated
letter. pat(1,0,a) = (abe). Recall that a,, is the n* suffix of a. We can
compute the (1,0)-patterns of the suffixes of a. For instance pat(1,0,a1) =
(abe), pat(1,0,a9) = (bac), pat(1,0,a3) = (ac). The sequence of (1,0)-
patterns of «a is (abc)(abc)(bac)(ac)(ca)(a)®, it is called patword(1,0,a).
patword(1,0, «) is an w-word over the alphabet of the possible (1,0)-patterns
of ¥ : Pats(1,0,%).

The (2, 0)-pattern of « is obtained by removing the repeated patterns of
patword(1,0,). If we look at patword(1,0, @) as an w-word of Pats(1,0,3)
we have that pat(2,0,) the (2,0)-pattern of « is a (1,0)-pattern in the al-
phabet Pats(1,0,%). pat(2,0,a) = ((abc)(bac)(ac)(ca)(a)) € Pats(2,0,X)

Formally for o € ¥* we can define by induction over m € N, pat(m,0, a)
the characteristic (m, 0)-pattern of @ and patword(m, 0, &) the (m, 0)-pattern
word of « as follows [2]:

e pat(0,0,a) = a(0),
e patword(m,0,a) € Pats(m,0,X)* such that patword(m,0,a)(i) =
pat(m707ai)v

11

e pat(m + 1,0, a) is the finite word obtained form patword(m, 0, «) by
deletion of all repeated letters.

4.2 Usage of Characteristic Patterns for Model Checking

We define (m, n)-pattern, noted ~, ,,, equivalence relation as follows: ¢ ~, ,,
p if and only if o and p have the same (m, n)-pattern. Characteristic patterns
are linked to LTL formulae through the following result:

Theorem 2 For all sequences o,p, o and rho cannot be distinguished in
LTL(U™, X™) if and only if they are equivalent, o ~y, , p.

Therefore we can say that a pattern p € Pats(m,n,Y) satisfies a for-
mula ¢ €LTL(U™, X™), written p = ¢, if for every sequence o such that
pat(m,n,o) = p, o = ¢. Moreover it is possible to directly check whether a
pattern p satisfies a formula ¢ by using the following procedure.

Algorithm 1 An algorithm checking whether p = ¢ by induction on p and
¢. If p € Pats(m,n,) then mtype(p) = m.
check(¢, p, n : int) : bool
if U(¢) < mtype(p) then
return check(¢,p(0),n)
else if ¢ =T then
return true
else if ¢ € ¥ then
return ¢ = p(n)
else if ¢ = — then
return - check(v,p,n)
else if ¢ = 1 A 1po then
return check(y1,p,n) A check(yz2,p,n)
else if ¢ = X then
return check(y,p,n+ 1)
else if ¢ = YUy then
10
while i < |p| A = check(¢2, p,n) do
if check(1,p(i),n) then
T—1i+1
else
i — |pl
return i < |p|

We tried to use the characteristic patterns for Model Checking. The
principle was to compute the patterns that can occur in a given Kripke
structure. The patterns would be generated on the fly and it would be
possible to see whether all of them satisfied the formula. When one pattern

12

does not satisfy the formula, we know that the specification is not fulfilled
by the structure. Even if it is not possible to generate the patterns on the
fly, it could still be an improvement over standard LTL Model Checking
in some cases. Standard LTL Model Checking and partial order reduction
take indeed 2 as input the product of the Kripke structure with the Biichi
automaton representing the negation of the LTL formula to be checked. In
general the Kripke structure is already huge and the automation does not
add much to the space complexity, but in some pathological cases, being able
to directly match the specification against the structure without computing
the cross product with Biichi automaton is valuable.

It has been possible to compute the (1,0)- and (2,0)-patterns of the
Kripke structure, but no general algorithm to find efficiently the (m,n)-
patterns with m > 2 has been fully designed yet.

5 Conclusion

LTL Model Checking is sometimes tractable thanks to the partial order re-
duction with ample sets method. This partial order reduction method is
based on the LTL(U, X°) fragment of Linear Temporal Logic. Therefore this
method cannot deal with specification formulae using the ‘next’ operator,
and when only a few ‘until’ operators are used, one could hope for a bet-
ter reduction. In this internship we have started to explore two ideas from
[4] to design a general partial order reduction method for the fragments of
the LTL(U™, X), LTL(U, X™) and possibly LTL(U™, X") hierarchies. One
possible way was to use the concept of generalised stuttering and try to find a
generalisation of the ample sets rules, but it was hinted that knowing when
to omit a transition could be intractable due to look-ahead requirements.
A different way has also been envisioned, it was shown that computing the
characteristic patterns of a Kripke structure would make it possible to allevi-
ate the state explosion problem in certain cases, but no general algorithm to
compute the characteristic patterns of any Kripke structure has been found
yet.

2This schemata was omitted in the report for the sake of brevity and simplicity.

13

References

[1] E. M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. 1999.

[2] Antonin Kucera and Jan Strejcek. Characteristic patterns for 1tl. In Peter
Vojtas, Maria Bielikova, Bernadette Charron-Bost, and Ondrej Sykora,
editors, SOFSEM, volume 3381 of Lecture Notes in Computer Science,
pages 239-249. Springer, 2005.

[3] Antonin Kucera and Jan Strejcek. The stuttering principle revisited.
Acta Inf., 41(7-8):415-434, 2005.

[4] Jan Strejcek. Linear Temporal Logic: Expressiveness and Model Check-
ing. PhD thesis, Faculty of Informatics, Masaryk University, Brno, Czech
Republic, 2004.

14

Figure 4: Example of partial order reduction for 1-letter stuttering. Left
original Kripke structure, right minimal reduced Kripke structure. Transi-
tions going from left to right are invisible and transition going from right to
left are possibly visible. Transitions going in different directions are inde-

pendent.

15

Figure 5: Example of partial order reduction for 1-letter stuttering. Left
original Kripke structure, right minimal reduced Kripke structure. We can
see on the reduce Kripke structure that global factors determine which tran-
sitions are needed in to fully represent the original system. Transitions going
from left to right are invisible and transition going from right to left are pos-
sibly visible. Transitions going in different directions are independent.

16

